Магнитится или нет "нержавейка"? Магнитится ли нержавейка: магнитные свойства нержавеющей стали Преимущества пищевой нержавеющей стали.

ПРО НЕРЖАВЕЮЩУЮ СТАЛЬ

В нашей стране бытует мнение, что "нержавейка" сталь не магнитится и соответственно главным тестом на "нержавеечность" является прикладывание к ней магнита. Однако, это на самом деле не так, поскольку есть очень много магнитных сортов нержавеющей стали. Поэтому, если к вашей нержавейке прилипает магнит, не спешите возвращать товар поставщику, возможно у вас именно ферритный класс нержавеющей стали. Ниже мы рассмотрим свойства, классификацию и сферы применения сплавов нержавеющей стали.

Химический состав и свойства нержавеющей стали

Нержавеющая сталь или "нержавейка"- это сложнолегированная сталь, которая является стойкой против коррозии в агрессивных средах. Основным легирующим элементом является хром (доля в сплаве 12-20%). Что бы усилить коррозионную стойкость, в сплав также добавляют никель (Ni), титан (Ti), молибден (Mo), ниобий (Nb); в различных количествах в зависимости от требуемых свойств к сплаву. Степень коррозионной стойкости сплава можно определить по содержанию основных элементов сплава - хрома и никеля. Если содержание хрома в сплаве больше 12% - это уже нержавеющий металл в обычных условиях и в слабоагрессивных средах. При содержании хрома более 17% в сплаве, это коррозионностойкий сплав в агрессивных средах (например, в 50% концентрированной азотной кислоте). В зоне контакта хромсодержащего сплава с агрессивной средой образуется защитная оксидная плёнка, которая защищает сплав от воздействия окружающей среды. Коррозионная стойкость нержавеющей стали проявляется именно из-за наличия защитной пленки. Кроме того, большое значение имеют такие характеристики: однородность металла, состояние поверхности, отсутствие склонности к межкристаллической коррозии.

Виды и классификация нержавеющей стали

Н/ж сталь бывает магнитной (ферритный класс) или немагнитной (аустенитный класс). Магнитные свойства не влияют на эксплуатационные характеристики нержавеющей стали, в частности на коррозионную стойкость. Различие магнитных свойств - это следствие различия внутренней структуры сталей, которая напрямую зависит от химического состава нержавейки. Проверять сталь на «нержавеечность» магнитом – это как проверять кожу на натуральность зажигалкой (бесполезно т.к. современный дерматин держит температуру гораздо выше, чем кожа).

Всю производимую нержавеющую сталь разделяют на три типа:

Хромистые с подгруппами:

Полуферритные (мартенисто-ферритные) Ферритные Мартенситные

Хромоникелевые с подгруппами:

Хромомарганцевоникелевые с подгруппами:

Аустенитные Аустенитно-мартенситные Аустенитно-карбидные Аустенитно-ферритные

При этом, первая группа является магнитной, вторая и третья - немагнитными.

ЕЩЕ ПОДРОБНЕ

Классификация материалов по их магнитным свойствам Тела, помещённые в магнитное поле, намагничиваются. Интенсивность намагничивания (J) прямо пропорциональна увеличению напряжённости поля (H): J= ϰH, где ϰ – коэффициент пропорциональности, называемый магнитной восприимчивостью. Если ϰ>0, то такие материалы называют парамагнетиками, а если ϰ Некоторые металлы – Fe, Co, Ni, Cd – обладают чрезвычайно большой положительной восприимчивостью (около 105), они называются ферромагнетиками. Ферромагнетики интенсивно намагничиваются даже в слабых магнитных полях. Нержавеющие стали промышленного назначения могут содержать в своей структуре феррит, мартенсит, аустенит или комбинации этих структур в разных соотношениях. Именно фазовыми составляющими и их соотношением определяется – магнитится нержавейка или нет. Магнитная нержавеющая сталь: структурный состав и марки

Существуют две фазовые составляющие стали с сильными магнитными характеристиками:

Мартенсит, с точки зрения магнитных свойств, является чистым ферромагнетиком. Феррит может иметь две модификации. При температурах, которые находятся ниже точки Кюри, он, как и мартенсит, ферромагнетик. Высокотемпературный дельта-феррит – парамагнетик.

Таким образом, коррозионностойкие стали, структура которых состоит из мартенсита, – это магнитная нержавейка. Эти сплавы реагируют на магнит, как обычная углеродистая сталь. А ферритные или феррито-мартенситные стали могут иметь различные свойства, зависящие от соотношения фазовых составляющих, но, чаще всего, и они ферромагнитны.

Мартенситные стали твёрдые, упрочняются закалкой и отпуском, как обычные углеродистые стали. Применяются они в основном для производства столовых приборов, режущего инструмента и в общем машиностроении. Стали 20Х13, 30Х13, 40Х13 мартенситного класса производятся преимущественно в термически обработанном шлифованном или полированном состоянии Хромоникелевая сталь мартенситного класса 20Х17Н2 обладает более высокой коррозионной стойкостью, чем 13 %-ые хромистые стали. Эта сталь отличается высокой технологичностью – хорошо поддаётся штамповке, горячей и холодной, обрабатывается резанием, может свариваться всеми видами сварки. Ферритные стали типа 08Х13 мягче мартенситных из-за меньшего содержания углерода. Одна из самых потребляемых сталей ферритного класса – магнитный коррозионностойкий сплав AISI 430, который является улучшенным аналогом марки 08Х17. Эта сталь применяется для изготовления технологического оборудования пищевых производств, используемого при мойке и сортировке пищевого сырья, измельчения, разделения, сортировки, расфасовки, транспортировки продукции. Ферритно-мартенситные стали (12Х13) имеют в структуре мартенсит и структурно-свободный феррит.

Немагнитная нержавеющая сталь

К немагнитным сплавам относятся хромоникелевые и хромомарганцевоникелевые стали следующих групп:

Аустенитные стали по объёму производства занимают ведущее место. Широко распространена нержавейка немагнитная аустенитного класса – сталь AISI 304 (аналог – 08Х18Н10). Этот материал применяется в производстве оборудования для пищевой промышленности, изготовления тары для кваса и пива, испарителей, столовых приборов – кастрюль, сковород, мисок, раковин для кухни, в медицине – для игл, судового и холодильного оборудования, сантехнического оборудования, резервуаров для жидкостей различного состава и назначения и сухих веществ. Стали 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 10Х17Н13М2Т имеют прекрасную технологичность и высокую коррозионную стойкость во многих агрессивных средах. Аустенитно-ферритным сталям характерно высокое содержание хрома и пониженное содержание никеля. Дополнительными легирующими элементами являются молибден, медь, титан или ниобий. Эти стали (08Х22Н6Т, 12Х21Н5Т, 08Х21Н6М2Т) имеют некоторые преимущества перед аустенитными сталями – более высокую прочность при сохранении требуемой пластичности, большую стойкость к межкристаллитной коррозии и коррозионному растрескиванию.

К группе немагнитных материалов относятся также коррозионностойкие аустенитно-мартенситные и аустенитно-карбидные стали. Способ определения, является ли немагнитная сталь коррозионностойкой Как показывает изложенная выше информация, однозначного ответа на вопрос – нержавейка магнитится или нет – не существует. Если сталь магнитится, можно ли узнать, является ли она коррозионностойкой? Для ответа на этот вопрос необходимо зачистить небольшой участок детали (проволоки, трубы, пластины) до блеска. На зачищенную поверхность наносят и растирают две-три капли концентрированного раствора медного купороса. Если сталь покрылась слоем красной меди – сплав не является коррозионностойким. Если никаких изменений на поверхности материала не произошло, то перед вами нержавеющая сталь. Проверить в домашних условиях, относится ли сталь к группе пищевых сплавов, невозможно. Магнитные свойства нержавеющей стали никак не влияют на эксплуатационные характеристики, в частности, на коррозионную стойкость материала

Виды нержавеющей стали нержавейка

Доброго времени суток, дорогие винокуры! Недавно мы столкнулись с удивительным для нас явлением. Некоторые детали оборудования сделанного из нержавеющей стали марки AISI 304 магнитятся и ржавеют. Что нас очень озадачило и удивило. Соответственно мы решили в этом вопросе разобраться подробней и вот что выяснилось.

Нержавеющая сталь марки AISI 304 является хромоникелевой и относится к аустенитной группе сталей, то есть является не магнитной. Так же как ее аналоги стали 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т и др.

Однако при определенных физических воздействиях металлопрокат данной группы может проявлять магнитные свойства. Так, например, при сварке любого типа, под воздействием высокой температуры, происходит выгорание легирующих элементов и изменение структуры металла в месте сварного шва. Соответственно в этом месте металл начинает проявлять магнитные свойства. Изменение структуры кристаллической решетки металла также происходит при механическом воздействии, как то ковка металла, накатка резьбы, воздействие прессом, изгиб металла и т.д. Что также ведет к проявлению магнитных свойств. При этом общие химические и физические свойства стали не меняются.

Теперь по поводу ржавчины. В первую очередь ржавчина может проявиться на сварочном шве. Из-за чего это может произойти. В процессе сварки на поверхности шва образуется пленка, которая имеет малую сопротивляемость к агрессивной среде, вот она то и может покрыться коррозией, то есть ржавчиной. Также ржавчина может проявиться мелкими пятнами и на самом металле. Это происходит из-за способа обработки металла, так сказать наведения красоты. После сварки конструкция зачищается стальной корщеткой, наводятся так называемые риски. Микрочастицы от этой щетки застревают в более мягкой нержавейке, они то и проявляются ржавыми пятнышками при взаимодействии с влагой, содержащейся, в том числе и в воздухе. Оба эти вида коррозии удаляются элементарно с помощью полировальной губки и больше не проявляются.

В общем, в процессе изучения этих вопросов мы поняли одно, физика наука интересная и увлекательная, которая не раз нас еще удивит!

С уважением, коллектив магазина НОВАТРА!

Информация взята из научных источников.

Плотность

7630 кг/м.куб.

Назначение

детали, работающие до 600 °С. Сварные аппараты и сосуды, работающие в разбавленных растворах азотной, уксусной, фосфорной кислот, растворах щелочей и солей и другие детали, работающие под давлением при температуре от —196 до +600 °С, а при наличии агрессивных сред до +350 °С.; сталь аустенитного класса

Модуль упругости

Модуль сдвига

Свариваемость

Сваривается без ограничений

Температура ковки

Начала 1200, конца 850. Сечения до 350 мм охлаждаются на воздухе.

Химический состав

Кремний:0.8,Марганец:2.0,Медь:0.30,Никель:9.0-11.0, Сера:0.020,Углерод:0.12,Фосфор:0.035, Хром:17.0-19.0,Титан:0.6-0.8,

А2, А4 — Характеристика крепежных изделий из нержавеющих сталей

Нержавеющие стали А2, А4: структура, механические свойства, химический состав. Крепеж из стали А2, А4 (нержавеющие болты, винты, гайки, шайбы, шпильки и т. д.): механические свойства, значения моментов затяжки и усилий предварительной затяжки.

Аустенитные стали содержат 15-26% хрома и 5-25% никеля, которые увеличивают сопротивление коррозии и практически не магнитны.

Именно аустенитные хромникелевые стали обнаруживают особенно хорошие сочетание обрабатываемости, механических свойств и коррозионной стойкости. Эта группа сталей наиболее широко используется в промышленности и в производстве элементов крепежа.

Стали аустенитной группы обозначаются начальной буквой «A» с дополнительным номером, который указывает на химический состав и применяемость в пределах этой группы:

Аустенитная структура

Группа стали

Номер материала

Краткое обозначение

Номер по AISI

X 5 CrNi 18-10 / X 4 CrNi 18-12

AISI 304 / AISI 305

X 6 CrNiTi 18-10

X 5 CrNiMo 18-10 / X 2 CrNiMo 18-10

AISI 316 / AISI 316 L

X 6 CrNiMoTi 17-12-2

Сталь A2 (AISI 304 = 1.4301 = 08Х18Н10) — нетоксичная, немагнитная, незакали-ваемая, устойчивая к коррозии сталь. Легко поддается сварке и не становится при этом хрупкой. Может проявлять магнитные свойства в результате механической обработки (шайбы и некоторые виды шурупов). Это наиболее распространенная группа нержавеющих сталей. Ближайшие аналоги — 08Х18Н10 ГОСТ 5632, AISI 304 и AISI 304L (с пониженным содержанием углерода).

Крепеж и изделия из стали A2 подходят для использования в общестроительных работах (например, при монтаже вентилируемых фасадов, витражных конструкций из алюминия), при изготовлении ограждений, насосной техники, приборостроения из нерж. стали для нефтегазодобывающей, пищевой, химической промышленности, в судостроении. Сохраняет прочностные свойства при нагреве до 425oС, а при низких температурах до -200oС.

Сталь A4 (AISI 316 = 1.4401 = 10Х17Н13М2) — отличается от стали А2 добавлением 2-3% молибдена. Это значительно увеличивает ее способность сопротивляться коррозии и воздействию кислот. Сталь А4 имеет более высокие антимагнитные характеристики и абсолютно не магнитна. Ближайшие аналоги — 10Х17Н13М12 ГОСТ 5632, AISI 316 и AISI 316L (с низким содержанием углерода).

Крепеж и такелажные изделия из стали A4 рекомендуются для использования в судостроении. Крепеж и изделия из стали A4 подходят для использования в кислотах и средах содержащих хлор (например, в бассейнах и соленой воде). Может использоваться при температурах от -60 до 450°С.

Классы прочности

Все аустенитные стали (от «А1» до «А5») подразделяются на три класса прочности независимо от марки. Наименьшую прочность имеют стали в отожженном состоянии (класс прочности 50).

Поскольку аустенитные стали не упрочняются закалкой, наибольшую прочность они имеют в холоднодеформированном состоянии (классы прочности 70 и 80). Наиболее широко используется крепеж из сталей А2-70 и А4-80.

Основные механические свойства аустенитных сталей:

Тип по ASTM (AISI)

Удельный вес (гр/см)

Механические свойства при комнатной температуре (20°С)

Твердость по Бринеллю - НВ

В отожжённом состоянии

Твердость по Роквеллу - HRB/HRC

Предел прочности при растяжении, H/мм 2

Предел прочности при растяжении, H/мм2

Относительное удлинение

Ударная вязкость

KCUL (Дж/см 2)

KVL (Дж/см 2)

Механические свойства при нагревании

Предел текучести при растяжении, H/мм2

Основные механические свойства болтов из сталей А2, А4 различных классов прочности:

Химический состав нержавеющей стали:

Класс стали

Группа

Химический состав (мас.%) 1) Выдержка из DIN EN ISO 3506

Примечание

Аустенитная

0,15
bis
0,35

1,75
bis
2,25

16
bis
18,5

10,5
до
14

16
bis
18,5

10,5
до
14

1) Максимальные значения, если не были указаны другие значения.
2) Серу можно заменять селеном.
3) Если массовая доля никеля ниже 8%, то массовая доля марганца должна составлять минимум 5%.
4) Для массовой доли меди нет минимального предела, если массовая доля никеля составляет больше 8%.
5) Молибден допускается по усмотрению изготовителя. Если для определенных случаев применения необходимо ограничение содержания молибдена, это должно быть указано клиентом.
6) Молибден также допускается по усмотрению изготовителя.
7) Если массовая доля хрома ниже 17%, то массовая доля никеля должна составлять минимум 12%.
8) В аустенитной стали с массовой долей углерода максимум 0.03% азот должен составлять максимум 0.22%
9) Для стабилизации должен содержаться титан ≤ 5xC максимум до 0.8% и быть обозначен в соответсвиии с этой таблицей или ниобий и/или тантал ≤ 10xC до максимум 1% и быть обозначен в соответствии с этой таблицей.

Аустенитные хромоникелевые стали обнаруживают особенно хорошее сочетание обрабатываемости, механических свойсв и коррозионной стойкости. Поэтому они рекомендованы для множества применений и являются самой значительной группой нержавеющих сталей. Важнейшим свойством этой группы сталей является высокая коррозионная стойкость, повышающаяся с ростом содержания легирующих, особенно хрома и молибдена.

В зависимости от назначения, условий работы, агрессивности среды изделия подвергают: а) закалке (аустенизации); б) стабилизирующему отжигу; в) отжигу для снятия напряжений; г) ступенчатой обработке. Изделия закаливают для того, чтобы: а) предотвратить склонность к межкристаллитной коррозии (изделия работают при температуре до 350 °С); б) повысить стойкость против общей коррозии; в) устранить выявленную склонность к межкристаллитной коррозии; г) предотвратить склонность к ножевой коррозии (изделия сварные работают в растворах азотной кислоты); д) устранить остаточные напряжения (изделия простой конфигурации); е) повысить пластичность материала. Закалку изделий необходимо проводить по режиму: нагрев до 1050-1100 °С, детали с толщиной материала до 10 мм охлаждать на воздухе, свыше 10 мм - в воде. Сварные изделия сложной конфигурации во избежание поводок следует охлаждать на воздухе. Время выдержки при нагреве под закалку для изделий с толщиной стенки до 10 мм - 30 мин, свыше 10 мм - 20 мин + 1 мин на 1 мм максимальной толщины. При закалке изделий, предназначенных для работы в азотной кислоте, температуру нагрева под закалку необходимо держать на верхнем пределе (выдержка при этом сварных изделий должна быть не менее 1 ч). Стабилизирующий отжиг применяется для: а) предотвращения склонности к межкристаллитной коррозии (изделия работают при температуре свыше 350 °С); б) снятия внутренних напряжений; в) ликвидации обнаруженной склонности к межкристаллитной коррозии, если по каким-либо причинам закалка нецелесообразна. Стабилизирующий отжиг допустим для изделий и сварных соединений из сталей, у которых отношение титана к углероду более 5 или ниобия к углероду более 8. Стабилизирующему отжигу для предотвращения склонности к межкристаллитной коррозии изделий, работающих при температуре более 350 °С, можно подвергать сталь, содержащую не более 0,08 % углерода. Стабилизирующий отжиг следует проводить по режиму: нагрев до 870-900 °С, выдержка 2-3 ч, охлаждение - на воздухе. При термической обработке крупногабаритных сварных изделий разрешается проводить местный стабилизирующий отжиг замыкающих швов по тому же режиму, при этом все свариваемые элементы должны быть подвергнуты стабилизирующему отжигу до сварки. При проведении местного стабилизирующего отжига необходимо обеспечить одновременно равномерные нагрев и охлаждение по всей длине сварного шва и прилегающих к нему зон основного металла на ширину, равную двум-трем ширинам шва, но не более 200 мм. Ручной способ нагрева недопустим. Для более полного снятия остаточных напряжений отжиг изделий из стабилизированных хромоникелевых сталей проводят по режиму: нагрев до 870-900 °С; выдержка 2-3 ч, охлаждение с печью до 300 °С (скорость охлаждения 50-100 °С/ч), далее на воздухе. Отжиг проводят для изделий и сварных соединений из стали, у которой отношение титана к углероду более 5 или ниобия к углероду более 8. Ступенчатая обработка проводится для: а) снятия остаточных напряжений и предотвращения склонности к межкристаллитной коррозии; б) для предотвращения склонности к межкристаллитной коррозии сварных соединений сложной конфигурации с резкими переходами по толщине; в) изделия со склонностью к межкристаллитной коррозии, устранить которую другим способом (закалкой или стабилизирующим отжигом) нецелесообразно. Ступенчатую обработку необходимо проводить по режиму: нагрев до 1050-1100 °С; время выдержки при нагреве под закалку для изделий с толщиной стенки до 10 мм - 30 мин, свыше 10 мм - 20 мин + 1 мин на 1 мм максимальной толщины; охлаждение с максимально возможной скоростью до 870-900°С; выдержка при 870-900 °С в течение 2-3 ч; охлаждение с печью до 300 °С (скорость - 50-100 °С/ч), далее на воздухе. Для ускорения процесса ступенчатую обработку рекомендуется проводить в двухкамерных или в двух печах, нагретых до различной температуры. При переносе из одной печи в другую температура изделий не должна быть ниже 900 °С. Ступенчатую обработку разрешается проводить для изделий и сварных соединений из стали, у которой отношение титана к углероду более 5 или ниобия к углероду более 8.